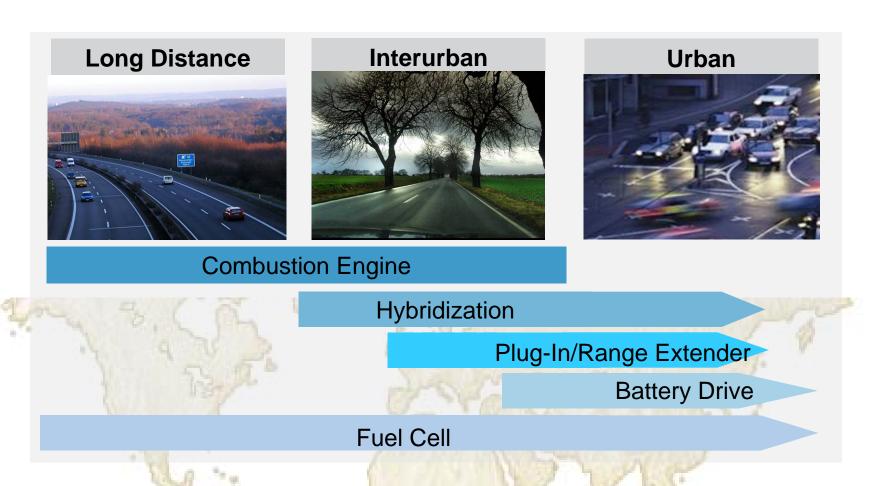
DAIMLER


On the Road to Sustainable Mobility Emission Free Mobility with Fuel Cell Powertrain

Sascha Simon Mercedes-Benz USA Advanced Product Planning 6/12/09

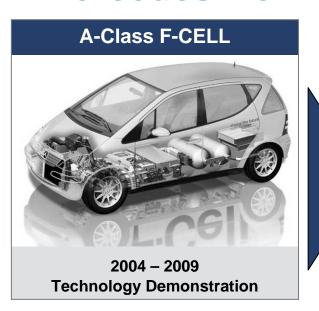
Drivetrains for Various Driving Cycles

Only fuel cell technology is suited equally for both, short and long distance mobility

Daimler's Investments in Fuel Cell Technology

Investments in Fuel Cell Electric Vehicles
Cars with electric powertrain and a fuel cell
system as an energy source

Since 1994 approx. \$ 1.7 BN (1.2 BN €)



Investments in Fuel Cell Electric Buses
City buses with electric powertrain and a
fuel cell system as an energy source

Since 2000 approx. \$ 111 M (80 M €)

From 2009 to 2011 Daimler will invest approx. \$ 700 M in research, development and commercial production of fuel cell vehicles

Mercedes-Benz Next Generation Fuel Cell

- Longer range (105 mi → approx. 250 mi)
- Higher stack lifetime
 - > 2000 hours
- More power 87hp (65kW) →134hp

(100kW)

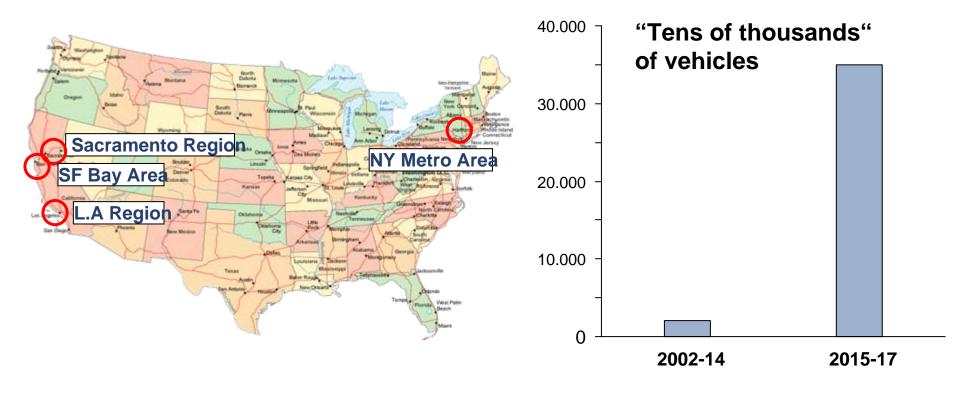
- High reliability
- Consumption adjusted

78 mpg (diesel equiv.)

Cold start capability -13° F

Department of Energy Objectives Achieved or Exceeded:

- ✓ Continuous data sharing with DoE/National Renewable Energy Lab (NREL)
- ✓ Overachieved DoE stack durability (2000 hours) and range goals (250 miles)
- ✓ Raised awareness of hydrogen technology through public education & outreach
- ✓ Developed codes and standards for rigorous safety processes through **5 years of** vehicle

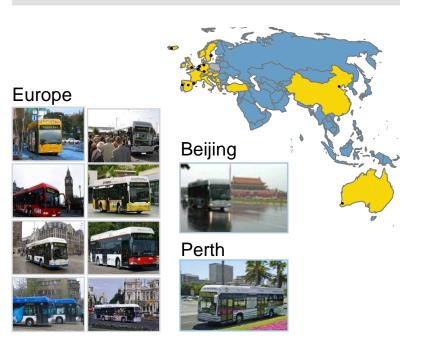

testing in diverse climates, temperatures and operating conditions

✓ Shaped standards and best practices.

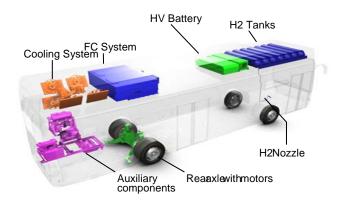
> 2009 DoE performance targets are proven - signal to enter transition to commercialization

DAIMLER

Joint Fuel Cell Action Plan USA


The order of magnitude presented above is in line with Daimler's product strategy

Daimler Worldwide Fleet Operation

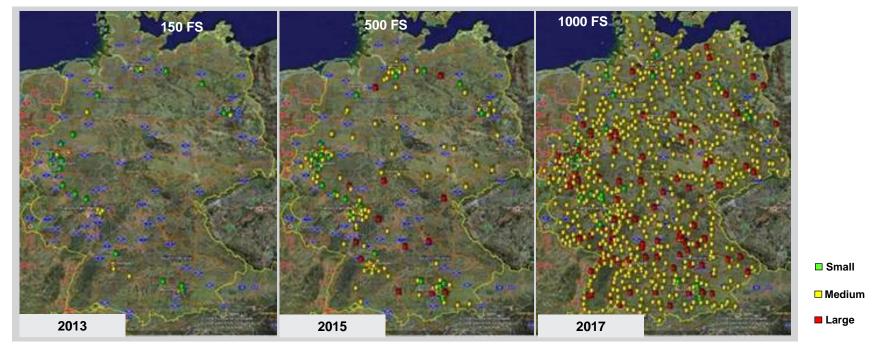

Public Transportation - Zero Emission Mobility

12 Cities (Europe, Asia, Australia) – 36 Buses

Achievements (April 2009)

- More than 1,300,000 miles
- More than 139,000 hours
- Availability: up to 96,1%
- More than 8 Mio. Passengers
- Lifetime fuel cell system: up to 4000 hours

- Fuel cell technology meets the requirements of public transportation
- > Experiences integrated into new Fuel Cell-Hybrid bus concept:
 - > Optimized fuel cell system and fuel cell operation
 - > Integrated lithium-ion high voltage battery
 - > Reduced weight


Worldwide Publicly Funded Programs for Hydrogen Infrastructure and Fuel Cell Mobility

Relevant Programs

	Europe	Germany	Japan
Funding projects	EU-JTI Demo & R&D	NIP Demo & R&D	JHFC 1+2 Demo & Validation
Project contents	Vehicle and H2- Infrastructure (Lighthouse)	H2 + FC-Technologies	Vehicle and H2- Infrastructure Vehicle operation
Timeline	2007 – 2014	2007 – 2016	2003 – 2011
Funding for demonstration	30 - 40% manufacturing and operating costs	48% manufacturing and operating costs	\$ US 46 M (mainly infrastructure)
Total funding H2 and FC	US \$ 1.4 Billion	US \$ 1.4 Billion	US \$ 2.5 Billion

8

Build-up of a H2-infrastructure in Germany

Infrastructure

- Area-wide build-up of a public H₂-infrastructure until 2017 (1,000 filling stations in Germany)
- investment of \$2 2.8 Billion (1,5 2 Billion €) for 1,000 filling stations until 2017

Target

- Determine variables for the hydrogen business case, e.g. untaxed subsidies for hydrogen and/or filling station operation
- · Transfer business case to other markets
- ► In 2013 already continuous driving from the north to the south of Germany will be possible
 - this equates to the distance between Washington DC and Chicago / Atlanta (635 mi)